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We present the method of solving the mechanochemical transport problem in multicomponent
solid solutions, namely, the method of quantitative description of the interdiffusion (ID) under
the stress field. We postulate that the velocities appearing in the momentum balance equation
should be the drift and diffusion velocity. The energy, momentum, and mass transport are
diffusion controlled, and the diffusion fluxes of the components are given by the Nernst-Planck
formulas. The diffusion depends on the chemical potential gradient and on the stress that can
be induced solely by the diffusion as well as by the boundary conditions. The key results lie in
the interpretation of the Navier-Lamé equation for the deformed regular crystal, where the
concentrations are not uniform and ID occurs. The presented coupling of the Darken and
CALPHAD methods with the momentum balance equation allows for quantitative analysis of
the transport processes occurring on entirely different time scales. It is shown that the proposed
method is effective for modeling transport processes in Fe-Ni-Cu alloys. We demonstrate the
case of ID in a planar plate, and predict slower penetration and accumulation. The experimental
results confirm theoretical predictions.
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mechanochemistry, multicomponent solution, Navier-
Lamé, nondimensionalization, stresses, time scales

1. Introduction

Experiments made in the 19th century showed that dif-
fusion in solids is as real as it is in liquids. Already in 1896,
Roberts-Austen[1] measured the diffusion of gold in lead
and calculated its diffusivity down to 100 °C. Unfortu-
nately, for the next 60 years the concept of conservation of
the lattice sites (in solids) and Fick’s laws dominated. In
1935, Gorsky[2] analyzed the interaction of diffusion and
stress. The idea was to treat a diffusing atom as a center of
dilatation that creates a local stress field. Alefeld et al.[3]

considered other local contributions such as an externally
applied stress. Larché and Cahn[4,5] studied various aspects
of the Gorsky concept, such as the effect of stress on the

mobility, the stresses due to the compositional inhomoge-
neities, and the stress influence on the boundary conditions.
The dependence of the local flux* on the geometry and
nonhomogeneity of the entire specimen was considered by
them as a failure of local Fick’s law and explained as an
effect of nonlocal factors. Finally, Larché and Voorhees[6]

formulated the model of diffusion in the presence of stress
based on the usual equilibrium thermodynamics of fluids.
All of the above models are limited to the diffusion of
various components in the conserved solid lattice (solute).

The entirely new understanding of diffusion in multi-
component systems started with Kirkendall experiments on
the interdiffusion (ID) between copper (Cu) and zinc (Zn).
They proved that diffusion by direct interchange of atoms,
the prevailing idea of the day, was incorrect. In 1946, Kirk-
endall, along with his student, Alice Smigelskas[7] showed
movement of the interface between the “initially different
phases” due to ID. They showed that the different intrinsic
diffusion fluxes of the components cause swelling (creation)
of one part and shrinking (annihilation) of the other part of
the diffusion couple. The key conclusion was that local
movement of a solid (its lattice) due to the diffusion is a real
process and that the lattice sites are not conserved in a solid.
Once the solid solution is nonuniform and the mobilities
differ from each other, then a vast number of phenomena
can occur (i.e., Kirkendall marker movement occurs, Kirk-
endall-Frenkel voids might be formed, and stresses are gen-
erated).

The concepts initiated by Kirkendall played a decisive
role in the development of the diffusion theory. In 1948,
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Darken[8] explained the Kirkendall shift observed during the
ID in solids by postulating the existence of local drift ve-
locity in solids. Thus, almost a century after Fick, Darken
showed again that diffusion in the solid phase proceeds
analogously to that in liquids. Nowadays, the drift velocity
in solids is universally accepted and is by some authors
called convection.[9]

The ID and stress (i.e., the mechanochemical transport
problem at constant temperature) was studied by only a few
authors. The key results are by Stephenson[9] and Beke.[10]

Stephenson[9] limited the stress problem to noncompressible
flow only, and was able to avoid mathematical and numeri-
cal difficulties. Beke[10] analyzed the stress problem in bi-
nary alloys and used relations analogous to those in the
Stephenson approach. The different partial molar volume
and mobility of the diffusing species generate an imbalance
in the volume transport. This is equivalent to the creation of
a nonuniform stress-free strain that couples the drift velocity
field and the strain. Finally, Boettinger et al.[11] analyzed
lateral deformation of the hypothetical binary diffusion
couple due to the ID.

The Navier-Stokes equation was “revisited” recently by
Brenner.[12] He postulated a revision of Newton’s law of
viscosity appearing in the deviatoric stress tensor in the
Navier-Stokes equation for the case of compressible fluids,
both gaseous and liquid. The postulated modification is
equivalent to the Darken concept of the drift velocity that
had already been postulated in the case of a solid phase.[13]

In the present work, the Navier-Lamé equation describes the
momentum conservation in a multicomponent regular crys-
tal. An effect of the different time scales for mechanical
(stress) and chemical (ID) processes explains the effect of
the geometry and boundary conditions of the entire system
on the ID. Thus, the hierarchical structure of a solid explains
the different time scales observed during the mechano-
chemical transport process. There are no new fundamental
laws, only new phenomena, as one considers a different
length scale.[14]

In a previous study,[15] the authors presented the method
of description of ID in solids and liquids. Due to the intro-
duction of the partial Cauchy stress tensor and pressure
approximations, the method was unsuccessful in practical
applications. In what follows, only widely accepted formu-
las are used, and the authors avoid the concept of partial
stress tensor. The coupling of the Darken method with the
momentum balance equation allows for an effective, quan-
titative analysis of the isothermal transport process (ID) in
the iron (Fe)-nickel (Ni)-Cu alloys.

2. Theory

The authors analyzed the mass, momentum, and energy
transport in a multicomponent regular crystal. This analysis
was based on: the Darken method for a multicomponent
solution (the continuity equations and the Vegard law as an
equation of state at equilibrium); the Navier-Lamé momen-
tum balance equation; the energy conservation formulae;
and the CALPHAD method to compute chemical potentials.

The Darken method for multicomponent solutions

(DMMS) is based on the Darken postulate that the total
mass flow is a sum of diffusion and drift flow.[16] The force
arising from local gradients causes the atoms of a particular
component to move with a velocity, which in general may
differ from velocity of the other components. The medium
is common for all of the species and diffusion fluxes that
affect the common drift velocity �drift. The physical laws
that govern the pure ID process (i.e., when stresses are
negligible) are continuity equations, and the postulate that
the total molar concentration of the solution is constant. The
extended Darken method in one dimension[16] allows mod-
eling the positions of the solution boundaries, densities, and
the drift velocity. Physical laws in DMMSs are the same as
in original Darken model. All the important differences are
in the formulation of the initial and boundary conditions.
The DMMSs allow the modeling of ID for arbitrary initial
distribution of the components, in a case of moving bound-
aries, of the reactions at interfaces and in many other situ-
ations. The uniqueness and existence of the solution, the
effective methods of numerical solution, and the successful
modeling of the “diffusional structures” (up-hill diffusion)
proved the universality of Darken’s drift concept. The
DMMSs are used here to describe mechanochemical trans-
port problem in a multicomponent solution, namely, the ID
in a nonideal solution (alloy), in a system in which stresses
are nonnegligible, and in three dimensions. Moreover, it is
assumed that the mobilities are isotropic (regular crystal)
and that no source of internal stresses, such as dislocations,
exists.

The use of the CALPHAD method, the Vegard law, and
the mechanochemical time scales will be described in the
next sections.

2.1 The Darken Method for Multicomponent Solutions and
Stress

The core of the DMMS method is the mass balance
equation:

��i

�t
= −divJi, i = 1, . . . , r (Eq 1)

where �i is the mass density and Ji denotes the flux of i-th
element that contains the diffusive and the drift terms:

Ji = �i�i = J i
d + �i�

drift = �i�i
d + �i�

drift, i = 1, . . . , r
(Eq 2)

where �drift denotes the drift velocity, r the number of com-
ponents in the solution, J i

d and �i
d are the diffusion flux and

diffusion velocity of i-th component, respectively.
The drift velocity is a result of deformation, ��, and of

the Darken drift velocity, �D. Thus:

�drift = �D + �� (Eq 3)

The mass balance equation can be written in the internal
reference frame (relative to the drift velocity). Thus, from
Eq 1 and 2 it follows:
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D�i

Dt |
�
drift = −divJ i

d − �idiv�drift i = 1, . . . , r (Eq 4)

The derivative in Eq 4 is called Lagrangian, substantial, or
material derivative:

D�i

Dt |
�
drift =

��i

�t
+ �drift grad�i (Eq 5)

and it gives the rate of density changes at the point moving
with an arbitrary velocity; here it is the drift velocity.

To include an effect of the stress field, the DMMS[16] has
to be further generalized. The more general form of the
diffusion flux is the Nernst-Planck equation:[17,18]

J i
d = �iBiFi := �i�i

d (Eq 6)

where � i
d, Bi, and Fi are the diffusion velocity, the mobility

of i-th component, and the force acting on it, respectively:

Fi = −grad��i +
�i

V

�
i=1

r

Ni�i
V

�p� = −grad��i +
�i

V

�V
�p�

= −grad��i + �i
m� (Eq 7)

�i
m =

�i
V�

�
i=1

r

Ni�i
V

p (Eq 8)

where �i and �i
m denote the chemical and mechanical po-

tential of the i-th component in the solution (alloy), respec-
tively, �i

V and p are the standard partial molar volume (at
105 Pa), and p is the pressure.

Upon combining Eq 4, 6, and 7, the continuity equation
becomes:

D�i

Dt
�

�
drift

= div��iBigrad��i + �i
m�� − �idiv�drift i = 1, . . . , r

(Eq 9)

The concentration of the solution is defined by:

c = �
i=1

r

ci = �
i=1

r
�i

Mi
(Eq 10)

From Eq 2, the following relations for the flux and velocity
of the i-th element hold:

Ji = ci�i
d + ci�

D + ci�
� (Eq 11)

�i = �i
d + �D + �� (Eq 12)

By summing Eq 11 for all components and using Eq 10 one
gets:

�
i=1

r

Ji = �
i=1

r

ci�i = c� = �
i=1

r

ci�i
d + c�D + c�� = c�d + c�D + c��

(Eq 13)

and from Eq 13 it follows:

�d = � − �D − �� = � − �drift (Eq 14)

It is postulated here that the drift velocity is the sum of
Darken drift velocity (generated by the ID) and the defor-
mation velocity �� (generated by the stress):

�drift = �D + �� (Eq 15)

Darken[8] postulated that diffusion fluxes are local and are
defined exclusively by the local forcing (e.g., the chemical
potential gradient, stress field, and electric field). He pos-
tulated the existence of the unique average velocity that he
called the drift velocity. In the original article on the
DMMS,[8] the Darken drift velocity, �D, is given:[16]

�

�x �c�D + �
i=1

r

ci�i
d� = 0

Upon integrating, the above relation takes the form:

�D = �*�t� −
1

c �
i=1

r

ci�i
d

The average, time-dependent velocity �*(t) depends on the
boundary conditions only[16] and in the closed system
equals zero.[19] Consequently, the Darken drift velocity in
the multicomponent one-dimensional mixture is given by:

�D = −
1

c �
i=1

r

ci�i
d (Eq 16)

Equation 16 states that drift velocity compensates the non-
balanced diffusional fluxes.

In this work, the authors generalize the original Darken
concept to include the different molar volumes (Vegard
law) and the deformation of an alloy. To include an effect of
different molar volumes of the components, �i

V, it was al-
ready postulated that the Vegard law (�V � ∑r

i�1Ni�i
V) is

the equation of state for the nondeformed crystal (at 105 Pa),
as seen in Eq 7. The Vegard law implies the more general
form of the Darken drift velocity:

�D = − ��
i=1

r

Ni�i
V�i

d����
i=1

r

Ni�i
V� (Eq 17)

The diffusion velocity in Eq 17 is given by Eq 6. Thus, it
depends on the stress, or more generally on the mechano-
chemical potential gradient. The drift velocity, seen in Eq
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15, can be computed from the momentum conservation for-
mula.

2.2 The Mechanochemical Transport Problem in the
Multicomponent Solution

For all of the processes that obey the mass conservation
law and when the chemical and/or nuclear reactions are not
allowed (the reaction term can be omitted), the equation of
mass conservation holds for every component as well as
their mixture (Eq 1).

2.2.1 Stress and Strain Relations. The general form of
the equation of motion for an elastic solid is very complex.
We will use the results that come out for an isotropic ma-
terial. In such a case, the equation of motion is the vector
equation f � (� + �)graddivu + �divgradu, where f is the
density of the force induced by the displacement vector u. It
shows that isotropic material (regular crystal) is completely
described by the two elastic constants. To get the equation
of motion, one can set f � �(�2u)/�t2, and by ignoring any
body forces, like gravity, one gets:[20]

�
�2u

�t2 = �� + ��graddivu + �divgradu. (Eq 18)

An elastic body is defined as a material for which the stress
tensor is an exclusive function of a deformation tensor F,

� = �(F) (Eq 19)

In this work, it is assumed that the displacements are small.
In such a case, the displacement gradient H is defined as the
gradient of the displacement vector (u � x − X):

H = gradu = F − 1 (Eq 20)

and the strain tensor is the symmetric part of H:

� =
1

2
�H + HT� (Eq 21)

where

�kl = �lk =
1

2
�uk,l + ul,k� (Eq 21A)

The constitutive equation of an isotropic, linear, and elastic
body is known as Hooke’s law:[21]

� = ��tr��1 + 2�� (Eq 22)

where � and � denote the Lame coefficients:

� =
vE

�1 + v� �1 − 2v�
and � =

E

2�1 + v�
(Eq 23)

where E, as shown previously, denotes the Young modulus
and 	 is the Poisson ratio.

The divergence of the stress tensor defined by the Eq 22
can be expressed:[21]

div� = �� + �� graddivu + �divgradu. (Eq 24)

The local pressure is defined by:

p = −
1

3
tr� (Eq 25)

where � is the Cauchy stress tensor.
The Navier-Lamé equation describes the momentum bal-

ance in an isotropic solid:[22]

�
D�

Dt��

= div� + �fb (Eq 26)

where � and fb denote the overall Cauchy stress tensor (as
in Eq 24) and body force, respectively.

2.2.2 The Energy Conservation Law. Finally, from
the mass and momentum conservation equations one can
derive the energy conservation law for an isotropic crystal:

�
i=1

r

�i

D

Dt
�Ts + �i + �i

m + Vext��
�

= �:Grad� + 
Grad�drift:Grad�

+ ��gradVext − div Jq (Eq 27)

When the external force fields do not depend on time Vext �
Vext(x), then it further reduces to:

�
i=1

r

�i

D

Dt
�Ts + �i + �i

m��� = �:Grad� + 
Grad�drift:Grad�

− div Jq (Eq 28)

where the heat flux is given by appropriate formula. Equa-
tions 27 and 28 express the first law of thermodynamics.

2.3 Initial Boundary Value Problem of Stress and
Interdiffusion

The derived laws of mass conservation (Eq 9), momen-
tum (Eq 26), and energy (Eq 28) form the set of second-
order partial-differential equations. In this work, the exter-
nal forcing is not analyzed, and consequently they become:

D�i

Dt��drift
= div��iBigrad��i + �i

m�� − �idiv�drift i = 1, . . . , r

�
D�

Dt�� = div�

�
i=1

r

�i

D

Dt
�Ts + �i + �i

m��� = �:Grad� + 
Grad�drift:Grad�

− div Jq
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where:

Div� = �� + ���grad div�drift + ��Div grad�drift

�i
m =

�i
V�

�
i=1

r

Ni�i
V

p

�d = � − �D − �� = � − �drift

p = −
1

3
tr� and �D = −��

i=1

r

Ni�i�i
d����

i=1

r

Ni�i�.

The chemical potential is a known function of the compo-
sition and the temperature, and is computed using the Cal-
phad method. The initial conditions are given by the known
initial distribution of components and the zero initial mo-
mentum of the system:

�i�0, x� = �i
0�x� for i = 1, 2, . . . , r (Eq 29)

�
i=1

r

�i�0, x��drift�0� + �
i=1

r

�i�0, x��i
d�0, x� = 0 (Eq 30)

2.3.1 The Boundary Conditions. Through the left
boundary, −�(t), and the right boundary, �(t), there is no
mass flow during the experiment t*, and external pressure is
constant:

Ji,L�t�, Ji,R�t� = 0 for t ∈ �0, tk �, i = 1, 2, . . . , r
(Eq 31)

pL�t�, pR�t� = const. for t ∈�0, tk � (Eq 32)

2.4 Nondimensionalization

For the purpose of numerical treatment, further analysis
is carried out in terms of nondimensional variables and
equations. The proper dimensionless formulation allows the
separation of terms (e.g., the mass diffusion from the lon-
gitudinal waves in the crystal in nonequilibrium). One can
introduce the following nondimensional symbols:

1) Dimensionless length:

x� =
x

L
(Eq 33)

where L denotes the characteristic diffusion distance (e.g.,
the jump length of the diffusing atoms).

2) Dimensionless velocity:

�� =
�

�*
(Eq 34)

where �* is a characteristic velocity. When the diffusion of
mass is considered, it is equal to self-velocity �* � D*/L.

3) Dimensionless time:

t� =
D*

L2 t =
�*

L
t = f t (Eq 35)

where D* and �* denote the self-diffusion coefficient, and
self-velocity, f, is the frequency of the effective jumps of the
diffusing atoms. In a multicomponent system, the average
diffusivity might be considered.

4) Dimensionless concentration:

c�i =
ci − �ci�

�ci�
(Eq 36)

where 〈ci〉 denotes the average concentration in the mixture.

5) Dimensionless flux:

J�i =
1

�*�ci�
Ji or J�i =

1

��*i ��ci�
Ji (Eq 37)

3. Results and Discussion

There exists a solution of the above model. At present the
authors solve this problem numerically using the finite dif-
ferential method in one dimension. In this work, studies of
diffusion couples are based on the Cu-Fe-Ni system at 1273
K. The Cu-Fe-Ni system was chosen because it is a single
phase over a wide range of compositions and because its
thermodynamic properties are fairly well known. Moreover,
it is the only ternary alloy in which the tracer diffusivities
are measured.[23] Thus, it offers a unique opportunity to test

Table 1 Tracer diffusivities and Young modulus at 1273 K for Fe-Ni and Ni-Cu alloys

Alloy composition, wt.% Tracer diffusion coefficients, m2 � s−1

Cu Fe Ni DCu DFe DNi Young modulus, GPa

… 80.3 19.7 7.52 × 10−15 4.95 × 10−16 2.33 × 10−16 115
… 50.4 49.6 2.52 × 10−15 3.08 × 10−16 3.25 × 10−16 120
… 99 1 1.92 × 10−15 6.71 × 10−16 3.24 × 10−16 120
67 … 33 1.08 × 10−15 4.23 × 10−16 4.15 × 10−16 70
41.9 … 58.1 1.92 × 10−15 6.71 × 10−16 3.24 × 10−16 100
52 … 48 4.19 × 10−14 1.26 × 10−14 3.74 × 10−15 90
86 … 14 1.92 × 10−15 6.71 × 10−16 3.24 × 10−16 60
… 24.1 75.9 1.92 × 10−15 6.71 × 10−16 3.24 × 10−16 117
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a complex method such as the combination of the Calphad
and mechanical potential methods. The solid solutions in
this system are not ideal, and consequently the diffusivities
depend on composition.[23] The driving force for the diffu-
sion in such a ternary system is the gradient of the mecha-
nochemical potential, which can be calculated from the con-
centration profiles and using the known thermodynamic
data of the system.

To calculate the concentration profiles in the Cu-Fe-Ni
system, one has to specify the necessary input parameters:
the activities of Fe, Ni, and Cu were calculated using the
CALPHAD method and commercially available math soft-
ware (Mathematica 5.1, Wolfram Research Inc., Champaign,
IL); the atomic masses and partial molar volumes of compo-
nents at 105 Pa (Vegard), Young modulus and Poisson ratio.

The intrinsic diffusivities were computed as a function of
the concentration of the components,[23] Di(c1,c2). Table 1
shows tracer diffusion coefficients for some selected com-
positions of the alloys. The initial compositions, the thick-
nesses of the diffusion couples, and their annealing time are
shown in Tables 1 and 2. The density of Fe-Ni-Cu alloys
was calculated, and consequently the partial molar volumes
of components, �i, at 1273 K, �i � Mi/�i

T(alloy), where Mi
is the atomic mass. The densities of alloys at T � 1273 K
were estimated using the following expression:[24]

�T = �Tm
− k�T − Tm� (Eq 38)

Fig. 1 The experimental versus computed concentrations of components in the Fe-Ni-Cu couple, using the Darken method for multi-
component solid solutions[16]

Table 2 Initial compositions, the annealing time, and
the average Young modulus of the diffusional couples
used for simulations

Diffusion couple, wt.%
Average Young
modulus, GPa

Time,
h

Thickness of
the diffusional

couple, mm

86Cu-14Ni|24.1Fe-75.9Ni 88.5 170 2 ± 0.1
24.1Fe-75.9Ni|Cu 77.5 170 2 ± 0.1
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where Tm is the alloy melting point, �Tm
is its density at

melting point, k (the coefficient of thermal expansion). Us-
ing data from the study by Lide[24] and Eq 38, the partial
molar volumes of the components for Cu-Fe-Ni at T �
1273 K have been calculated: �Cu � 7.92 (cm3 mol−1); �Fe
� 7.66 (cm3 mol−1]; and �Ni � 7.21 (cm3 mol−1). The
alloy molar volume at 105 Pa follows from Vegard’s law.

There are no experimental or theoretical predictions of
the Young modulus for Fe-Ni-Cu alloys at high tempera-
tures. In this work, the Young modulus was estimated on the
base of data for pure elements, and the Fe-Ni and Ni-Cu
systems.[24-27] Thus, based on the temperature dependence
of the Young modulus of Fe,[26] Fe-Ni,[25,27] Ni-Cu,[25] and
Ni-based superalloys[28] the values of the Young modulus
for Fe-Ni and Ni-Cu alloys at 1273 K were estimated (Ta-
ble 1).

The Poisson ratio was estimated based on values for
Fe-based alloys[29,30]: v � 0.29.

In Fig. 1, the Darken method was compared with the
experimental data (without stress). The calculated concen-
tration profiles of Cu, Fe, and Ni are compared with the
experimental results, and show marked disagreement.

Figure 2 shows the comparison of the Darken method
combined with the stress effect (this work) with the experi-
mental data. The calculated concentration profiles of Cu,
Fe, and Ni show good agreement with the experimental
results.

Figures 1 and 2 show the measured and computed evo-
lution of the concentrations. Comparison with experimental
data shows that the formulated method of the quantitative
description of the stresses in solids is self-consistent. They
demonstrate that the presented mathematical description of

Fig. 2 The experimental versus computed concentrations of components in the Fe-Ni-Cu couple in this work (using the Darken method
for multicomponent solid solutions with stress effect included)
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ID and stress is the effective tool for simulating such pro-
cesses.

4. Summary

A mathematical description of ID in multicomponent
systems was formulated. For the known thermodynamic
data, the intrinsic diffusivities and the certain average
mechanochemical properties of the alloy, the evolution of
the concentration profiles, the pressure, and the drift veloc-
ity can be predicted.

The model was applied for the modeling of the ID in the
Fe-Ni-Cu diffusion couples. The calculated concentration
profiles were consistent with the experimental results.

The examples presented in this work show the potential
of the model in describing ID in a wide range of diffusion-
limited processes. An effective application of the model
involves knowledge of the thermodynamics of the system
and of the mechanical and kinetic data. The kinetic data—
self diffusivities—can be obtained using, for instance, the
radiotracer technique,[31] the inverse method, or computa-
tion when the mechanism of diffusion is known. Significant
progress has been observed in the software. Programs like
Thermo-Calc (Thermo-Calc Software, Stockholm, Swe-
den), FactSage (ESM Software, Inc, Hamilton, OH), or the
CALPHAD database can be used as an effective tool in
obtaining thermodynamic activities.

The Nernst-Planck flux formula was adapted to model
the mechanochemical transport processes. The results show
the prospect of the extension of DMMSs in future applica-
tions: electromigration; diffusion in electrolytes; biology;
and nanoscale modeling.
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